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Introduction: Numerous studies have demonstrated a protective effect of hyperbaric oxygen
therapy in experimental ischemic brain injury, and many physiological and molecular
mechanisms of hyperbaric oxygen therapy-related neuroprotection have been identified.
Methods: Review of articles pertaining to hyperbaric oxygen therapy and cerebral ischemia in
the National Library of Medicine and National Institutes of Health database, emphasizing
mechanisms of hyperbaric oxygen therapy-related neuroprotection.
Results: Hyperbaric oxygen therapy has been shown to ameliorate brain injury in a variety of
animal models including focal cerebral ischemia, global cerebral ischemia, neonatal hypoxia–
ischemia and subarachnoid hemorrhage. Small human trials of hyperbaric oxygen therapy in
focal ischemia have not shown benefit, although one trial of hyperbaric oxygen therapy before
cardiopulmonary bypass demonstrated improved neuropsychological and inflammatory out-
comes with hyperbaric oxygen therapy. Hyperbaric oxygen therapy is associated with improved
cerebral oxygenation, reduced blood–brain barrier breakdown, decreased inflammation,
reduced cerebral edema, decreased intracranial pressure, reduced oxidative burden, reduced
metabolic derangement, decreased apoptotic cell death and increased neural regeneration.
Conclusion: On a molecular level, hyperbaric oxygen therapy leads to activation of ion
channels, inhibition of hypoxia inducible factor-1a, up-regulation of Bcl-2, inhibition of MMP-9,
decreased cyclooxygenase-2 activity, decreased myeloperoxidase activity, up-regulation of
superoxide dismutase and inhibition of Nogo-A (an endogenous growth-inhibitory factor).
Ongoing research will continue to describe the mechanisms of hyperbaric oxygen therapy-
related neuroprotection, and possibly expand hyperbaric oxygen therapy use clinically. [Neurol
Res 2009; 31: 114–121]
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INTRODUCTION
Hyperbaric oxygen therapy has been identified as a
potential therapy for ischemic injury to the central
nervous system1,2. Many studies have reported
improved neurological outcomes with hyperbaric oxy-
gen therapy in experimental animal models of ischemic
brain injury including focal ischemia, global ischemia,
neonatal hypoxia–ischemia and subarachnoid hemor-
rhage3–6. Human clinical studies have generated mixed
results to date, although hyperbaric oxygen therapy may
be beneficial in chronic cerebral vascular disease7 or in
the setting of cardiopulmonary bypass8. A small number
of studies have tested hyperbaric oxygen therapy in
acute focal ischemia, but these studies have not shown
benefit to date9.

In this review, we consider publications about
hyperbaric oxygen therapy and cerebral ischemia, with
an emphasis on the mechanisms of hyperbaric oxygen
therapy-related neuroprotection. Relevant literature was

located in the National Library of Medicine and
National Institutes of Health Database (http://www.pub-
med.gov) between 1970 and 2007 using keywords
‘hyperbaric oxygen’ and ‘cerebral ischemia’, related
topic links on http://www.pubmed.gov, and from
bibliographies of articles reviewed. In the last 15 years,
there have been no fewer than 65 animal and human
studies of hyperbaric oxygen therapy in cerebral
ischemic injury.

Hyperbaric oxygen therapy is defined as a fraction of
inspired oxygen (FiO2) of 1 (100% oxygen) at greater
than 1 atmosphere absolute (ATA)2. Recent animal
studies have used pressures ranging 1.5–3.5 ATA10–14,
and duration of treatment ranging from 1 to
3 hours12,13. Frequently investigators use a range of
2.6–3.0 ATA. Individual studies may use single11 or
multiple14 treatment sessions. For safety and comfort of
treatment subjects, gradual compression and decom-
pression (5–15 minutes) is usually used before and after
treatment12. Hyperbaric oxygen is administered by a
specialized chamber that is designed to maintain supra-
atmospheric pressures. Figure 1A shows an example of
a small animal hyperbaric oxygen chamber. The
horizontal platform permits placement of a rodent cage
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within the chamber. Figure 1B shows an analogous
hyperbaric oxygen chamber for human patients. The
patient is supine during treatment, and is permitted to
use a television, radio or reading materials during the
hyperbaric treatment session.

Hyperbaric oxygen therapy is indicated for a variety
of conditions including infection (gangrene, osteomye-
litis and others), ischemia of surgically implanted tissue,
poor wound healing, radiation injury, thermal burns,
gas embolism and carbon monoxide poisioning15. At
our institution, hyperbaric oxygen therapy is most
frequently used in the care of patients with non-healing
wounds or chronically infected tissues.

PHYSIOLOGICAL EFFECTS OF HYPERBARIC OXYGEN
THERAPY IN THE CENTRAL NERVOUS SYSTEM
Exposure to hyperbaric oxygen leads to increased
oxygen tension in the brain, modulation of cerebral
blood flow and modulation of intracranial pressure. The
arterial partial pressure of oxygen (PaO2) with hyperba-
ric oxygen therapy may rise as high as 2000 mmHg
from a normal baseline of 80–100 mmHg16. Because of

the overwhelming increase in oxygen availability with
hyperbaric conditions, oxygen partial pressure in most
body compartments rises dramatically, even without a
robust vascular supply. For example, brain tissue partial
pressure of oxygen (PBrO2) may increase from a baseline
from 20–40 mmHg to 420 mmHg with 2.5 ATA hyper-
baric oxygen17. In some circumstances, hyperbaric
oxygen therapy may support normal tissue metabolism
even in the absence of an adequate supply of oxygen
delivered by hemoglobin2 (normally the quantity of
dissolved of oxygen while breathing room air is
insufficient to support life in the absence of hemoglo-
bin18, but hyperbaric oxygen therapy can potentially
sustain life in a state of extreme anemia). The increase in
tissue oxygen tension under hyperbaric conditions is
transient and only persists as long as hyperbaric
conditions are maintained11.

Hyperbaric oxygen therapy has variable effects on
cerebral blood flow. In healthy human and animal
subjects, hyperbaric conditions cause a mild decrease in
cerebral blood flow of up to 20%17. This change in
cerebral blood flow may have an anatomical variance
depending on region of interest17. Measurement of
cerebral blood flow in experimental models of ischemia
have yielded variable results. One study of permanent
middle cerebral artery ischemia reported that hyperba-
ric oxygen therapy (3 ATA 6 120 minutes) did not alter
blood flow in the ischemic penumbra19. In experimental
SAH, hyperbaric oxygen therapy was reported to
increase cerebral blood flow4. In transient global
cerebral ischemia, hyperbaric oxygen therapy
(2.8 ATA 6 125 minutes) caused decreased cerebral
blood flow20. In human patients, the changes in cerebral
blood flow reported with hyperbaric oxygen therapy are
also variable. In intensive care unit patients with a
variety of types of brain injury, hyperbaric oxygen
therapy (1.5 ATA 6 1 hour) was associated with
elevated cerebral blood flow in patients with reduced
pre-treatment cerebral blood flow, but reduced cerebral
blood flow in patients with elevated pre-treatment
cerebral blood flow21. Mechanisms of the effect of
hyperbaric oxygen therapy on cerebral blood flow are
not well understood.

Hyperbaric conditions generally appear to reduce
intracranial pressure17. This has been demonstrated in
experimental traumatic brain injury (hyperbaric oxygen
therapy, 1.5 ATA 6 1 hour), experimental subarach-
noid hemorrhage (hyperbaric oxygen therapy, 2.8 ATA
6 2 hours) and in human patients with severe brain
injury4,21–23. The mechanisms responsible for decreased
intracranial pressure with hyperbaric oxygen therapy
are not well understood.

HYPERBARIC OXYGEN THERAPY AND CEREBRAL
ISCHEMIA IN ANIMAL STUDIES
Hyperbaric oxygen therapy ameliorates brain injury in
experimental studies when administered as pre-ischemic
therapy14,24–29 or post-ischemic therapy11–13,30–33. Inves-
tigators have demonstrated the protective effect of
hyperbaric oxygen therapy in experimental animal

Figure 1: (A) A typical bench-top small-animal hyperbaric oxygen
chamber; (B) a human hyperbaric oxygen chamber. The patient lies
supine during therapy, and is able to watch the television monitor
on top of the unit for entertainment
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models such as middle cerebral artery occlusion11,
neonatal hypoxia–ischemia32,34, global forebrain ische-
mia35, subarachnoid hemorrhage4,5 and cardiac arrest36.
Early exposure to hyperbaric oxygen is associated with
improved outcomes in experimental middle cerebral
artery occlusion37. Hyperbaric oxygen therapy has been
shown to be a superior neuroprotectant compared to
normobaric oxygen therapy31 or hyperbaric air therapy38.
Beneficial effects of hyperbaric oxygen therapy in focal
ischemia in animal studies include decreased infarction
size11, decreased edema12, decreased blood–brain barrier
breakdown31, decreased apoptotic cell death30,39,
improved cerebral glucose utilization33 and improved
neurobehavioral scores12.

Outcomes from hyperbaric oxygen therapy after
experimental focal ischemia depend partly on the model
of focal ischemia. Hyperbaric oxygen therapy after
transient focal ischemia is frequently beneficial11–13,
whereas hyperbaric oxygen therapy after permanent
focal ischemia is frequently not protective30, 40–42. Why
this distinction exists between transient and permanent
focal ischemia is not clear presently, although the time
course of initiation of hyperbaric oxygen therapy relative
to the onset of ischemia may be critically important.
Studies with rapid initiation of hyperbaric oxygen therapy
after the onset of permanent focal ischemia have shown
increased benefit19.

Common therapeutic parameters for hyperbaric oxy-
gen therapy in animal studies include absolute pressures
between 2 and 3.5 ATA and duration of treatment
between 1 and 3 hours11–13,43. Focal ischemic stroke in
humans frequently comes to attention after a delay of
several hours, and much of the experimental focal
ischemia research has emphasized the allowable post-
ischemic delay in administration hyperbaric oxygen
therapy. Hyperbaric oxygen therapy is most effective in
the setting of focal ischemia if administered within the
first six hours after reperfusion41,44. Interestingly, post-
ischemic exposure to hyperbaric oxygen may actually
be harmful41,44, although there is not universal agree-
ment on this point45. Two studies have reported better
outcomes with hyperbaric oxygen therapy (3 ATA 6
1 hour) within 6 hours of reperfusion after middle
cerebral artery occlusion but worse outcomes if
hyperbaric oxygen therapy is administered after 6 hours
of reperfusion41,44. One study has reported that hyper-
baric oxygen therapy (2.5 ATA 6 2 hours 6 6
treatments) is beneficial after middle cerebral artery
occlusion if delayed as long as 24 hours after reperfu-
sion45. In this latter study, multiple doses of hyperbaric
oxygen therapy (six treatments) may have expanded the
therapeutic window for treatment. This finding may be
critically important for successfully translating hyperba-
ric oxygen therapy into clinical practice because human
patients frequently come to medical attention many
hours after the onset of ischemic stroke.

Hyperbaric oxygen therapy preconditioning has been
effective in a variety of models of cerebral ischemia.
Hyperbaric oxygen therapy (3.5 ATA 6 1 hour 6 5
treatments) before experimental global cerebral ische-
mia is protective if given within 24 but not 72 hours

before ischemia14. In neonatal rats, hyperbaric oxygen
therapy preconditioning (2.5 ATA 6 150 minutes 6 1
treatment) is effective before hypoxia–ischemia24.
Hyperbaric oxygen therapy preconditioning before
experimental middle cerebralartery occlusion ischemia
(2.5 ATA 6 1 hour 6 3–5 treatments) is protective28.
Further study is needed to refine ideal treatment
protocols for pre-treatment and to identify patients
who might benefit from preconditioning.

HYPERBARIC OXYGEN THERAPY AND CEREBRAL
ISCHEMIA IN HUMANS
Translation of hyperbaric oxygen therapy from experi-
mental models to clinical practice has resulted in
limited success. There have been several randomized,
controlled clinical trials of hyperbaric oxygen therapy
after focal cerebral infarction9,46,47 and other ischemic
pathology7,8. A study by Rusyniak et al. tested
hyperbaric oxygen therapy (2.5 ATA 6 1 hour) after
focal ischemia9. In this randomized, prospective,
controlled, double-blinded trial, patients were given
hyperbaric oxygen therapy shortly after admission to the
hospital after a diagnosis of acute ischemic stroke.
Patients were then studied for 90 days. There was no
apparent benefit of hyperbaric oxygen therapy at
24 hours on neurological testing, and surprisingly the
hyperbaric oxygen therapy group fared worse on
examination after 90 days. This study was well designed
though had several limitations. First, the study was
relatively small in size (n517 for hyperbaric oxygen
therapy, n516 for sham treatment). Second, only a
small percentage (,15%) of patients received hyperba-
ric oxygen therapy within the first 6 hours of the onset of
symptoms. Animal studies have suggested that early
hyperbaric oxygen therapy is most effective41, 44,
although there is a possibility that multiple doses may
expand the treatment window45. Third, the study
enrolled patients who did not receive thrombolysis.
Animal studies have demonstrated that hyperbaric
oxygen therapy is more effective in transient ischemia
than in permanent ischemia, and perhaps hyperbaric
oxygen therapy would be beneficial in the post-
thrombolytic patient population. However, this study
generally agrees with other human trials which have
failed to show benefit of hyperbaric oxygen therapy, and
perhaps there are other unrecognized factors that
preclude successful translation of hyperbaric oxygen
therapy into clinical use for ischemic stroke48,49.
Additional research is needed, possibly with an
emphasis on earlier (within 6 hours) administration of
hyperbaric oxygen therapy.

Although human studies in focal ischemia have not
shown benefit of hyperbaric oxygen therapy, other
studies have demonstrated that hyperbaric oxygen
therapy may be beneficial in other patterns of brain
ischemia. In chronic symptomatic cerebrovascular
disesease, daily hyperbaric oxygen therapy may be
associated with improved motor and cognitive func-
tion7. Hyperbaric oxygen pre-treatment (2.4 ATA 6
1 hour 6 3 treatment) before coronary bypass artery
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grafting (CABG) is associated with improved neuropsy-
chological performance and decreased serum markers
of inflammation and stress such as E-selectin, CD18 and
HSP-707. CABG surgery places a patient at risk for focal
ischemia or post-operative cognitive decline50–53, and
therefore is an attractive target for hyperbaric oxygen
therapy pre-treatment studies.

HYPERBARIC OXYGEN THERAPY SIDE EFFECTS
Transient exposure to hyperbaric pressures in healthy
human subjects is not associated with long-term
physiological changes or brain changes on magnetic
resonance imaging54. However, extreme hyperbaric
conditions (4.95 ATA 6 1 hour) may be associated
with central nervous system oxygen toxicity55. Lipid
peroxidation and altered enzymatic anti-oxidative
processes have been shown to occur at 4 ATA56.
Elevated pressures (5.0 ATA) may also increase the
susceptibility to seizures57. Mechanistically, some of
these side effects may relate to alterations in nitric oxide
metabolism at high pressure. Several studies have
reported that hyperbaric oxygen therapy of 5 ATA is
associated with up-regulation of nitric oxide synthase57

and direct inactivation of nitric oxide58.
Hyperbaric oxygen therapy at lower pressures (for

example, 2 ATA 6 1 hour) is associated with few side
effects. Lipid peroxidation is not increased by hyperba-
ric oxygen therapy at standard conditions. Hyperbaric
oxygen therapy (2 ATA 6 1 hour) after experimental
middle cerebral artery occlusion59 or global cerebral
ischemia60 (2.8 ATA 6 125 minutes) was not asso-
ciated with increased lipid peroxidation. Hyperbaric
oxygen therapy (2.8 ATA 6 2 hours) after subarachnoid
hemorrhage may actually be associated with decreased
lipid peroxidation and oxidative stress5. In subarachnoid
hemorrhage, decreased lipid peroxidation may relate
mechanistically to decreased NADPH oxidase5.
Significant lipid-peroxidation appears to occur with
hyperbaric oxygen therapy at 4 ATA or higher3, and
guidelines for hyperbaric oxygen therapy recommend
maximum hyperbaric oxygen therapy exposure of no
greater than 3 ATA15.

One major concern regarding the application of
hyperbaric oxygen therapy to neonatal patients relates
to the potential for hyperbaric oxygen therapy to cause
retinopathy of prematurity61. Oxygen toxicity has long
been thought to be a cause of retinopathy of prematur-
ity, although recent work has begun to call this
assumption into question62. A recent multicenter study
of supplemental oxygen therapy in premature infants
found that oxygen exposure did appear to worsen
retinopathy of prematurity in premature infants who
already had a diagnosis of retinopathy of prematurity,
and that oxygen therapy may actually help a subgroup
of infants with retinopathy of prematurity62. Other work
suggests that the development of retinopathy of pre-
maturity may relate more to rapid cycling of relative
hypoxia and hyperoxia63. Although there is still strong
concern for retinopathy of prematurity with hyperbaric
oxygen therapy in neonates, preliminary work in animal

models of hyperbaric oxygen therapy for neonatal
hypoxia–ischemia have demonstrated significant poten-
tial benefit from hyperbaric oxygen therapy34 without
development of retinopathy of prematurity61.

MECHANISMS OF HYPERBARIC OXYGEN THERAPY
Experimental studies of hyperbaric oxygen therapy in
cerebral ischemia have shown that hyperbaric oxygen
therapy is associated decreased brain infarction11,
decreased edema12 and improved neurobehavioral
outcomes12. These effects have been linked to multiple
molecular mechanisms, outlined in Figure 2.

Increased oxygen tension in hypoxic tissue
In acute ischemic injury, hyperbaric oxygen may help

sustain acutely hypoxic tissue. This may be especially
true in penumbral or watershed areas after an infarc-
tion19. By increasing oxygen delivery to ischemic areas
of the brain, hyperbaric oxygen therapy may improve
local tissue metabolism64. However, because of the
highly transient nature of the elevated oxygen tension11,
it seems likely that increased oxygen tension is not the
only mechanism that explains the benefit of hyperbaric
oxygen therapy. In a cardiac arrest model of global
cerebral ischemia, post-ischemic hyperbaric oxygen
therapy (2.7 ATA 6 1 hour) was shown to lead to a
correction of an elevated oxygen extraction ratio and
improved neurological outcomes36.

Absolute versus relative oxygen tension
One important question about the mechanism of

hyperbaric oxygen therapy is whether absolute oxygen
tension is more or less important than relative oxygen
tension and similarly, whether the mechanisms of
hyperbaric oxygen therapy and hypoxic precondition-
ing are distinct. Hypoxic preconditioning is neuropro-
tective prior to cerebral ischemia, possibly because of
molecular changes induced by relative periods of hypo-
and normoxia65. Studies comparing hyperbaric precon-
ditioning and hypoxic preconditioning have detected
significant mechanistic distinctions between the two24.
In experimental neonatal hypoxia–ischemia, hyperbaric
oxygen preconditioning suppresses mitochondrial aco-
nitase activity, whereas hypoxic preconditioning does
not (mitochondrial aconitase activity is generally
regarded as a measure of oxidative stress because it is
suppressed by superoxides). Additionally, manganese–
superoxide dismutase (Mn–SOD) mRNA decreases with
hypoxic preconditioning but not hyperbaric oxygen
preconditioning in neonatal hypoxia–ischemia24. These
observations suggest that mechanisms of hypoxic
preconditioning and hyperbaric oxygen preconditioning
are distinct, although much work remains in fully
describing this distinction.

Reduction of excitotoxic stress
Ischemic brain injury is associated with excitotoxic

stress and physiological derangement that may further
exacerbate brain injury. Hyperbaric oxygen therapy is
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associated with a normalization of extracellular home-
ostasis and relative protection from excitotoxic stress.
Studies of hyperbaric oxygen therapy in focal ischemia
have shown that hyperbaric oxygen therapy (3 ATA 6
1 hour) is associated with a reduction of excitotoxic
metabolites such as glucose, pyruvate, lactate and
glutamate66. Likewise, hyperbaric oxygen therapy
(2.8 ATA 6 1 hour) is associated with a reduction of
striatal dopamine67. In neonatal hypoxia–ischemia,
hyperbaric oxygen therapy (2.5 ATA 6 2 hours) has
been shown to aid in preservation of ATP and other high
energy phosphate compounds68.

Activation of ion channels
Hyperbaric oxygen therapy after global cerebral

hemorrhage and subarachanoid hemorrhage is asso-
ciated with normalization of Na/K-ATPase activity69,70.
This may occur as a result of improved energy balance
within the ischemic brain, although work in an
experimental lung injury model has shown that hyper-
baric oxygen therapy may actually up-regulate Na/K-
ATPase expression71. Hyperbaric oxygen therapy may
also activate mitochondrial ATP-sensitive potassium
channels (mitoKATP). Activation of mitoKATP may be
neuroprotective by suppressing Bax translocation and
cytochrome C release from mitochondria, and thereby
inhibiting apoptosis33. MitoKATP activation also tends to
hyperpolarize the cell, which helps to preserve the
energy balance of the cell and limit excitotoxic stress72.
The net result from activation of these ion channels is an
inhibition of depolarization and an inhibition of
apoptosis.

Stabilization of the blood–brain barrier
Hyperbaric oxygen therapy is associated with stabi-

lization of the blood–brain barrier in ischemic pathol-
ogy31,73,74. In studies of laminin-5, a marker of blood–
brain barrier breakdown, hyperbaric oxygen therapy
(3 ATA 6 1 hour), is associated with decreased levels
of laminmin-5 compared to normobaric oxygen after
focal ischemia31. Decreased free laminin-5 suggests
preservation of the vascular basal lamina. Hyperbaric
oxygen therapy is also associated with reduced matrix
metalloproteinase-931. Hyperbaric oxygen therapy may
inhibit the up-regulation of matrix metalloproteinase-9
after ischemia, which would likely result in less
degradation of the vascular basal lamina and lower
laminin-5 levels31. Other studies have shown that
hyperbaric oxygen therapy is associated with decreased
levels of vascular endothelial growth factor6, and
decreased vascular endothelial growth factor is asso-
ciated with preservation of the blood–brain barrier.

Reduction of oxidative stress
Ischemic brain injury is associated with the elaboration

of free radicals and reactive oxygen species75. Studies of
oxidative stress and hyperbaric oxygen therapy have
shown that hyperbaric oxygen therapy is associated with
decreased lipid peroxidation in Carbon Monoxide-
mediated brain injury76 and in subarachnoid hemor-
rhage5. In middle cerebral artery occlusion, hyperbaric
oxygen therapy is not associated with increased lipid
peroxidation59. Mechanistically, decreased oxidative
burden with hyperbaric oxygen therapy may relate to
decreased NADPH oxidase activity5.

Figure 2: Mechanisms of hyperbaric oxygen therapy-related neuroprotection
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Defenses against oxidative stress includes factors such
as SOD, glutathione peroxidase, catalase and glu-
tathione75,77. Hyperbaric oxygen therapy is associated
with maintenance of these intracellular defenses. In
global cerebral ischemia, hyperbaric oxygen therapy
(2 ATA 6 1 hour 6 7 treatments) after global cerebral
ischemia in rats was associated with enhanced super-
oxide dismutase activity69. Hyperbaric oxygen therapy
(2.5 ATA 6 150 minutes) before neonatal hypoxia–
ischemia in rats leads to elevation Mn–SOD24. These
changes help protect against free radical damage.

Modulation of inflammation
Inflammation after ischemic stroke contributes to

post-ischemic pathology78, and hyperbaric oxygen
therapy (2.8 ATA 6 45 minutes) is associated with
reduced inflammation after experimental middle cere-
bral artery occlusion29. Hyperbaric oxygen therapy is
associated with decreased neutrophil infiltration29 and
reduced myeloperoxidase activity in middle cerebral
artery occlusion25. In carbon monoxide-induced ische-
mia, hyperbaric oxygen therapy (3 ATA 6 45 minutes)
is associated with decreased leukocyte adherence to
microvasculature76. Hyperbaric oxygen therapy may
also disrupt a specific b2 integrin interaction that is
important for inflammatory cells76. In experimental
middle cerebral artery occlusion, hyperbaric oxygen
therapy (3 ATA 6 1 hour) is associated with reduced
cyclooxygenase-2 mRNA and protein levels (an induci-
ble enzyme responsible for elaboration of inflammatory
prostanoids, prostaglandins, prostacyclins and throm-
boxane)79. In inflammatory pathology of the gastric
intestine system such as Crohn’s disease, hyperbaric
oxygen therapy is associated with decreased inflamma-
tory mediators such as TNF-a, IL-1 and IL-680.

Inhibition of apoptosis
Pharmacological inhibition of apoptosis has been an

attractive target for stroke research because apoptosis is
a common pathway for cell death in many types of
ischemic brain injury81. Numerous studies have
reported an anti-apoptotic effect of hyperbaric oxygen
therapy12,30,33,39. Hyperbaric oxygen therapy is asso-
ciated with reduced PARP cleavage, reduced cleaved
caspase 3 and reduced in DNA fragmentation char-
acteristic of apoptotic death3,12,30,33,39. In global cere-
bral ischemia and focal ischemia, hyperbaric oxygen
therapy appears to increase the Bcl-2/Bax ratio in favor
of anti-apoptotic outcomes12,26,27. Hyperbaric oxygen
therapy-induced activation of mitoKATP may also
promote an anti-apoptotic increase in the Bcl-2/Bax
ratio and an inhibition of cytochrome C release33.
Hypoxia inducible factor 1a (HIF-1a) is associated with
apoptotic cell death after cerebral ischemia82, and
hyperbaric oxygen therapy has been associated with
an inhibition of HIF-1a6,12,32,83. Hyperbaric oxygen
therapy is also associated with lower levels of the target
gene products of HIF-1a including BNip3 and vascular
endothelial growth factor6.

Regeneration of the central nervous system
In peripheral nerves, hyperbaric oxygen therapy

stimulates regeneration after injury84,85. Studies of
repetitive doses of hyperbaric oxygen therapy after
cerebral ischemia have shown that hyperbaric oxygen
therapy may cause gliosis37, and hyperbaric oxygen
therapy may potentially stimulate central nervous
system regeneration. Central nervous system regenera-
tion after injury or ischemia is inhibited by endogenous
factors such as Nogo-A86,87. Nogo-A is up-regulated
after cerebral ischemia, and this inhibits regeneration87.
Hyperbaric oxygen therapy is associated with decreased
levels of Nogo-A, which may be a mechanism by which
hyperbaric oxygen therapy promotes central nervous
system regeneration87.

CONCLUSION
Hyperbaric oxygen therapy has been shown to be
neuroprotective in multiple models of ischemic brain
injury in animal studies. Hyperbaric oxygen therapy is
associated with improved cerebral oxygenation,
reduced blood–brain barrier breakdown, decreased
inflammation, reduced cerebral edema, decreased
intracranial pressure, reduced oxidative burden,
reduced metabolic derangement, decreased apoptotic
cell death and increased neural regeneration. These
beneficial effects of hyperbaric oxygen therapy have
been linked to multiple molecular mechanisms includ-
ing activation of ion channels, inhibition of HIF-1a, up-
regulation of Bcl-2, inhibition of matrix metalloprotei-
nase-9, decreased cyclooxygenase-2 activity, decreased
myeloperoxidase activity, up-regulation of SOD and
inhibition of Nogo-A. Hyperbaric oxygen therapy has
been used successfully for neuroprotection prior to
cardiac surgery, although trials of hyperbaric oxygen
therapy in focal cerebral ischemia have not shown
benefit. Future research will continue to identify
mechanisms of hyperbaric oxygen therapy-related
neuroprotection and to expand hyperbaric oxygen
therapy in humans with cerebral ischemia.
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