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Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy.
J Appl Physiol 106: 988 –995, 2009. First published October 9, 2008;
doi:10.1152/japplphysiol.91004.2008.—The goal of this review is to outline
advances addressing the role that reactive species of oxygen and nitrogen play in
therapeutic mechanisms of hyperbaric oxygen. The review will be organized
around major categories of problems or processes where controlled clinical trials
have demonstrated clinical efficacy for hyperbaric oxygen therapy. Reactive spe-
cies are now recognized to play a major role in cell signal transduction cascades,
and the discussion will focus on how hyperbaric oxygen acts through these
pathways to mediate wound healing and ameliorate postischemic and inflammatory
injuries.

wound healing; hypoxia-inducible factor; CD34; integrins; heat shock proteins

THERAPEUTIC MECHANISMS OF action for hyperbaric oxygen
(HBO2) are based on elevation of both the partial pressure of
oxygen and hydrostatic pressure. Elevating the hydrostatic
pressure increases partial pressure of gases and causes a re-
duction in the volume of gas-filled spaces according to Boyle’s
law. These actions have direct relevance to treating patholog-
ical conditions in which gas bubbles are present in the body,
such as arterial gas embolism and decompression sickness. The
majority of patients who undergo HBO2 therapy are not treated
for bubble-induced injuries; hence therapeutic mechanisms are
related to an elevated O2 partial pressure. A summary of these
mechanisms is shown in Fig. 1.

It is well accepted that reactive oxygen species (ROS)
mediate O2 toxicity, which for HBO2 encompasses pulmonary
injuries, central nervous system effects manifested by grand
mal seizures, and ocular effects such as reversible myopia (29).
ROS and reactive nitrogen species (RNS) also serve as signal-
ing molecules in transduction cascades, or pathways, for a
variety of growth factors, cytokines, and hormones (4, 25, 82,
123). As such, reactive species can generate either “positive”
or “negative” effects depending on their concentration and
intracellular localization. Although more is still to be learned
about the role ROS and RNS play in therapeutic responses of
HBO2, this review will take stock of how far the field has
progressed. The review will be organized around major cate-
gories of problems or processes where controlled clinical trials
have demonstrated clinical efficacy for HBO2.

ROS are generated as natural by-products of metabolism and
they include superoxide (O2

•�), hydrogen peroxide (H2O2),
hypochlorous acid (HClO), and hydroxyl (HO•). ROS are
increased in many organs by hyperoxia (60). Scavenging
antioxidants combat the overproduction of reactive species.
Enzymatic antioxidants include superoxide dismutase, cata-
lase, and thioredoxin- and glutathione-dependent peroxidase(s)
and reductase(s). Acting in conjunction with these enzymes are
the nonenzymatic antioxidants vitamin C, vitamin E, thiore-
doxin, glutathione, uric acid, �-carotene, and carotene (124).
Because exposure to hyperoxia in clinical HBO2 protocols is
rather brief (typically �2 h/day), studies show that antioxidant
defenses are adequate so that biochemical stresses related to
increases in ROS are reversible (33, 34, 89, 97).

RNS include nitric oxide (NO) and agents generated by
reactions between NO, or its oxidation products, and ROS.
There are three NO synthase enzymes responsible for synthe-
sizing .NO while converting L-arginine to L-citrulline: NOS-1
(neuronal NO synthase, nNOS), NOS-2 (inducible/inflamma-
tory NO synthase, iNOS) and NOS-3 (endothelial NO syn-
thase, eNOS). Peroxynitrite (ONOO�) is the product of a
reaction between O2

•� and NO (10). Additionally, peroxide
enzymes, and especially myeloperoxidase, can catalyze reac-
tions between nitrite (NO2), a major oxidation product of NO,
and hydrogen peroxide, or HClO to generate oxidants such as
nitryl chloride and nitrogen dioxide that are capable of nitration
and S-nitrosylation reactions (18, 72, 99).

WOUND HEALING

HBO2 is used in current practice to treat refractory diabetic
wounds and delayed radiation injuries. A typical treatment
protocol is daily exposures to 2.0–2.4 atmospheres absolute
(ATA) for 90–120 min for 20–40 days. Treatments often
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include so-called air breaks, where a patient breathes just air
for 5 min once or twice through the course of a treatment. This
intervention has been demonstrated to enhance pulmonary O2

tolerance (52).
Discussion of the pathophysiology of diabetic wounds and

delayed radiation injuries is beyond the scope of this review,
and the reader is referred to several recent publications (32,
42). Common elements shared by both disorders include de-
pletion of epithelial and stromal cells, chronic inflammation,
fibrosis, an imbalance or abnormalities in extracellular matrix
components and remodeling processes, and impaired keratin-
ocyte functions (17, 32, 42, 79, 109, 121). Diabetic wound
healing is also impaired by deceased growth factor production,
whereas in postradiation tissues there appears to be an imbal-
ance between factors mediating fibrosis vs. normal tissue
healing (17, 32, 121).

The effectiveness of HBO2 as an adjuvant therapy for the
treatment of diabetic lower extremity ulcerations is supported
by six randomized trials and evaluations from a number of
independent evidence-based reviews (6, 7, 49, 53, 69). The
pathophysiology of radiation injury is obviously different from
diabetic wounds, but the varied tissue abnormalities have been
likened to a chronic wound (32). The benefit of HBO2 for
radiation injury also has been shown in randomized trials, and
its utilization supported by independent evidence-based re-
views (11, 30, 81). It is important to state that for both diabetic
wounds and radiation injuries, HBO2 is used in conjunction
with standard surgical management techniques. That was the
format followed in clinical trials demonstrating its efficacy. By
itself, or if used only in a postoperative period, HBO2 is
frequently inadequate treatment (5, 76). Animal trials have also
documented benefits of HBO2 (45, 46, 80, 138). The basis for
its efficacy is only partially understood, but appears to be a
combination of systemic events as well as local alterations
within the wound margin (see Fig. 1).

Neovascularization occurs by two processes. Regional an-
giogenic stimuli influence the efficiency of new blood vessel
growth by local endothelial cells (termed angiogenesis), and
they stimulate the recruitment and differentiation of circulating
stem/progenitor cells (SPCs) to form vessels de novo in a
process termed vasculogenesis (27, 51, 112). Clinical HBO2

has effects on both these processes.
HBO2 reduces circulating levels of proinflammatory cyto-

kines under stress conditions [e.g., endotoxin challenge (43)],

and in wounded tissues or isolated cells, HBO2 increases
synthesis of many growth factors. HBO2 does not alter circu-
lating levels of insulin, insulin-like growth factors, or proin-
flammatory cytokines [e.g., tumor necrosis factor-�, interleu-
kin (IL) -6, and IL-8] in normal healthy humans (28, 43).
Vascular endothelial growth factor (VEGF) and angiopoietin,
as well as stromal-derived factor-1 (SDF-1) influence SPCs
homing to wounds and SPCs differentiation to endothelial cells
(55, 92). Synthesis of VEGF has been shown to be increased in
wounds by HBO2, and it is the most specific growth factor for
neovascularization (107). HBO2 also stimulates synthesis of
basic fibroblast growth factor and transforming growth fac-
tor-�1 by human dermal fibroblasts (64), angiopoietin-2 by
human umbilical vein endothelial cells (74), and it upregulates
platelet-derived growth factor receptor in wounds (14). Extra-
cellular matrix formation is closely linked to neovasculariza-
tion, and it is another O2-dependent process (57). Enhanced
collagen synthesis and cross-linking by HBO2 have been de-
scribed, but whether changes are linked to the O2 dependence
of fibroblast hydroxylases, which have a Km for O2 of �25
mmHg, well below that achieved in the presence of HBO2 vs.
some alteration in balance of wound growth factors, metallo-
proteinases and inhibitors of metalloproteases, is as yet unclear
(36, 57, 135).

Oxidative stress at sites of neovascularization will stimulate
growth factor synthesis by augmenting synthesis and stabiliz-
ing hypoxia-inducible factor (HIF)-1 (58, 87). Hypoxia induc-
ible transcription factors are heterodimers of HIF-� and a
constitutively expressed HIF-� (also called the aryl hydrocar-
bon receptor nuclear translocator subunit). Enhanced growth
factor synthesis by HBO2 is due at least in part to augmented
synthesis and stabilization of HIFs (107, 115, 116). Although
this clearly sounds paradoxical, even under normoxic condi-
tions HIF activity is regulated by a variety of cellular micro-
environmental modifications. It is well recognized that expres-
sion and activation of HIF-� subunits are tightly regulated, and
their degradation by the ubiquitin-proteasome pathway typi-
cally occurs when cells are replete with O2 (98, 103). However,
whether hypoxic or normoxic conditions prevail, free radicals
are required for HIF expression (16, 39, 100, 102, 103). In
addition to ROS, synthesis of NO is required for VEGF-
mediated angiogenesis (44), and many downstream effects of
VEGF are stimulated via NO (8, 91).

Fig. 1. Overview on therapeutic mechanisms
of hyperbaric oxygen (HBO2). The two primary
effects of HBO2 are to reduce the volume of
bubbles in the body and elevate tissue oxygen
tensions. The figure outlines effects that occur
due to increased production of reactive oxygen
species (ROS) and reactive nitrogen species
(RNS) because of hyperoxia. GFs, growth fac-
tors; VEGF, vascular endothelia growth factor;
HIF-1, hypoxia inducible factor-1; SPCs, stem/
progenitor cells; HO-1, heme oxygenase-1,
HSPs, heat shock proteins; Syn’sis, synthesis.
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There are three distinct HIF-� proteins: HIF-1�, -2�, and
-3�. HIF-1 and -2 coordinate many cell responses involved
with neovascularization by regulating gene transcription, and,
although there is substantial overlap in their activity, there are
also a number of genes preferentially regulated by either HIF-1
or -2 (126). The biological function of HIF-3 is unclear, and at
least one splice variant negatively modulates HIF-1� and -2�,
although its expression is restricted to specific tissues and
subject to hypoxic conditions (77, 83).

The influence HBO2 has on HIF isoform expression
appears to be conflicting, and further work is needed to
elucidate what are likely to be variations based on tissue-
specific responses. Additionally, higher or lower levels of
HIF isoforms may vary based on chronology (e.g., looking
early or late after wounding or an ischemic insult). One
recent model showing accelerated wound healing by HBO2

reported lower HIF-1 levels at wound margins, along with
reduced inflammation and fewer apoptotic cells (138). In
contrast, higher levels of HIF-1 have been linked to elevated
VEGF in wounds in response to hyperoxia (58, 107). Re-
cently, exposure to HBO2 was shown to elevate HIF-1 and
-2 levels in vasculogenic SPCs. The basis for this effect is
augmented production of the antioxidant, thioredoxin and
one of its regulatory enzymes, thioredoxin reductase, in
response to oxidative stress (115). Among other actions,
thioredoxin has been shown to promote the expression and
activity of HIFs (40, 62, 130). HIF-1 and -2 then secondarily
can stimulate transcription of many genes involved with
neovascularization, including SDF-1 and its counterpart
ligand, CXCR4, as well as VEGF. A physiological oxida-
tive stress that triggers the same pathway is lactate metabo-
lism (87).

Bone marrow NOS-3 activity is required for SPCs mobi-
lization (4). SPCs mobilization is compromised by diabetes,
apparently because NOS activity can be impaired due to
responses related to hyperglycemia and a reduced presence
of insulin (13, 22, 37, 38). In addition, radiation and che-
motherapy, along with other factors such as age, female sex,
and coronary artery disease, are known to diminish SPCs
mobilization (59, 94, 101, 125). By stimulating NO synthe-
sis in bone marrow, HBO2 mobilizes SPCs in normal hu-
mans and patients previously exposed to radiation (118),
and preliminary observations suggest the same is true for
diabetic patients (116, 133). In animal models, SPCs mobi-
lized by HBO2 home to wounds and accelerate healing (45,
46, 115). HBO2 also improves clonal cell growth of SPCs
from humans and animals (118). Functional enhancements
of SPCs by HBO2 appear to be related to augmentation of
HIF-1 and -2 levels (115).

Therefore, to summarize, HBO2 can stimulate healing in
refractory wounds and irradiated tissues. One oxidative stress
response that triggers improved function, at least for SPCs,
involves elevations of thioredoxin and thioredoxin reductase,
which secondarily increase HIF-1 and HIF-2. The influence of
HBO2 on HIFs in other cell types or tissues is variable.
Increased synthesis of growth factors and collagen has been
demonstrated. A separate free radical-based mechanism for
augmentation of neovascularization by HBO2 is bone marrow
SPCs mobilization, which increases the number of circulating
SPCs that may home to injured tissues.

REPERFUSION/INFLAMMATORY INJURIES AND HBO2

For this review, we will group a variety of disorders together
to facilitate the discussion on mechanisms of HBO2, although
we admit this approach grossly simplifies complex pathophys-
iological processes. Clinical HBO2 protocols for these condi-
tions are much shorter than for wound healing. Treatments
occur for just a few days rather than weeks; they are performed
at higher O2 partial pressures (�2.5–3.0 ATA) and may occur
multiple times in the same day.

Skin graft and flap failures may be due to ische-
mia-reperfusion injuries. A prospective, blinded clinical trial
found that administration of HBO2 before and for 3 days
following the procedure led to a significant 29% improvement
in graft survival (93). This is the only randomized clinical trial
on skin grafts, but numerous animal studies support its con-
clusions (see citations in Ref. 67). Clinical studies have also
documented significant survival enhancement with HBO2 for
extremity reimplantation and free tissue transfer, and following
crush injury (15, 127). Other clinical trials have shown reduc-
tions in coronary artery restenosis after balloon angioplasty/
stenting (105, 106), decreased muscle loss after thrombolytic
treatment for myocardial infarction (31, 104, 108), improved
hepatic survival after transplantation and more rapid return of
donor liver function (84, 110), and reduced incidence of
encephalopathy seen after cardiopulmonary bypass and follow-
ing carbon monoxide poisoning (3, 128).

As is the case with wound healing, there appear to be
complex and perhaps overlapping mechanisms for therapeutic
effects of HBO2 (see Fig. 1). An early event associated with
tissue reperfusion is adherence of circulating neutrophils to
vascular endothelium by �2-integrins. When animals or hu-
mans are exposed to HBO2 at 2.8–3.0 ATA (but not to just 2.0
ATA O2), the ability of circulating neutrophils to adhere to
target tissues is temporarily inhibited (63, 70, 117, 120, 137).
In animal models, HBO2-mediated inhibition of neutrophil
�2-integrin adhesion has been shown to ameliorate reperfusion
injuries of brain, heart, lung, liver, skeletal muscle and intes-
tine, as well as smoke-induced lung injury and encephalopathy
due to carbon monoxide poisoning (9, 65, 111, 114, 117, 122,
132, 134, 137). It also appears that benefits of HBO2 in
decompression sickness are related to the temporary inhibition
of neutrophil �2-integrins, in addition to the Boyle’s law-
mediated reduction in bubble volume as discussed in the
introduction (78).

Exposure to HBO2 inhibits neutrophil �2-integrin function
because hyperoxia increases synthesis of reactive species de-
rived from NOS-2 and myeloperoxidase, leading to excessive
S-nitrosylation of �-actin (113). This is a highly localized
process occurring within neutrophils and not observed in other
leukocytes, probably because of a paucity of myeloperoxidase.
This modification increases the concentration of short, non-
cross-linked filamentous (F)-actin, alters F-actin distribution
within the cell, and it inhibits �2 integrin clustering on the
membrane surface. HBO2 does not reduce neutrophil viability
and functions such as degranulation, phagocytosis, and oxida-
tive burst in response to chemoattractants remain intact (61,
117, 120). Inhibiting �2-integrins with monoclonal antibodies
will also ameliorate ischemia-reperfusion injuries, but in con-
trast to HBO2, antibody therapy causes profound immunocom-
promise (85, 86). Probably the most compelling evidence that
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HBO2 does not cause immunocompromise comes from studies
in sepsis models, where HBO2 has a beneficial effect (23, 96,
119). HBO2 does not inhibit neutrophil antibacterial functions
because the G protein-coupled “inside-out” pathway for acti-
vation remains intact, and actin nitrosylation is reversed as a
component of this activation process (113). The “denitrosyla-
tion” mechanism in neutrophils is an area of current investi-
gation.

Monocyte-macrophages exhibit lower stimulus-induced
proinflammatory cytokine production after exposure to HBO2.
This is seen with cells removed from humans and animals
exposed to HBO2 and also when cells are exposed to HBO2 ex
vivo (12, 71, 129). The HBO2 effect on monocyte/macro-
phages may be the basis for reduced circulating cytokine levels
after endotoxin stress, as was mentioned above (43). The
mechanism is unknown, but could be related to HBO2-medi-
ated enhancement of heme oxygenase-1 and heat shock pro-
teins (HSP; e.g., HSP70) (35, 97). Hence, once again, an
oxidative stress response seems to occur. There are additional
mechanisms involved with beneficial HBO2 effects in reperfu-
sion models. HBO2 augments ischemic tolerance of brain,
spinal cord, liver, heart, and skeletal muscle by mechanisms
involving induction of antioxidant enzymes and anti-inflam-
matory proteins (24, 47, 56, 66, 90, 136).

HIF-1 is responsible for induction of genes that facilitate
adaptation and survival from hypoxic stresses (103), and so it
has been a focus of interest when examining HBO2 therapeutic
mechanisms in ischemia-reperfusion models. HIF-1 is in-
volved with pro- as well an antiapoptotic pathways and in
brain, promotes astrocyte mediated-chemokine synthesis (1,
88). In several models, exposure to HBO2 appears to amelio-
rate postischemic brain injury by decreasing HIF-1 expression
(26, 73). When HBO2 is used in a prophylactic manner to
induce ischemic tolerance, however, its mechanism appears
related to up-regulation of HIF-1 and at least one of its target
genes, erythropoietin (48). Thus, as was the case in wound
healing models, timing of HBO2 application appears to influ-
ence cellular responses.

There has been a long tradition of considering HBO2 therapy
for a variety of highly virulent infectious diseases, such as
necrotizing fasciitis and clostridial myonecrosis, with a view
that the microorganisms involved were particularly sensitive to
elevated partial pressures of O2. Several retrospective cohort
trials indicate there is a benefit to including HBO2 with
antibiotics and surgery for necrotizing fasciitis (41, 95, 131).
There is only one multicenter retrospective study where a trend
toward increased survival was seen in the HBO2 group [30%
mortality (9 of 30 patients) with HBO2 and 42% (10 of 24
patients) without HBO2], but this was not statistically signifi-
cant. Despite this observation, the authors stated support for
use of HBO2 because of apparent selection bias between
groups (19). Retrospective comparisons examining efficacy of
HBO2 in clostridial myonecrosis support its use, but again
there is ongoing debate (50).

With regard to mechanisms, most clinically significant an-
aerobic organisms are actually rather aerotolerant and thus
tissue O2 tensions, even those achievable with HBO2, are
expected to be only bacteriostatic for these organisms (68).
More likely therapeutic mechanisms include impairment of
exotoxin production, which is O2 sensitive and can be inhibited
at tissue partial pressures achievable with HBO2 (50), and

leukocyte killing, which is improve at progressively higher O2

tensions (75). We suggest that a broader focus may be required
to elucidate the as yet unclear pathophysiology of these serious
infections and the role of HBO2. A recent study of streptococ-
cal myonecrosis showed that host responses to even minor
traumatic injuries increase expression of vimentin in muscle
tissue, which mediates adhesion/sequestration of microorgan-
isms (21). There is also a role for intravascular platelet-
neutrophil aggregation with vascular occlusion in these infec-
tious processes (20, 54). These issues are much closer to the
pathophysiological events seen with disorders such as ische-
mia-reperfusion injuries than traditional ideas in infectious
diseases. There is ample room for further investigation.

In review, oxidative stress responses triggered by HBO2

improve outcome from a wide variety of postische-
mic/inflammatory insults. HBO2 also improves ischemic toler-
ance when used in a prophylactic manner. The basis for these
effects is only partially understood. Augmented synthesis of
reactive species temporarily inhibits endothelial sequestration
of neutrophils by inhibiting �2-integrin function and in many
tissues HBO2 will induce antioxidant enzymes and anti-inflam-
matory proteins.

SUMMARY

This review has highlighted some of the beneficial actions of
HBO2 and the data that indicate oxidative stress brought about
by hyperoxia can have therapeutic effects. Figure 1 provides a
summary of mechanisms, all of which appear to stem from
elevations in reactive species. Although there has been sub-
stantial advancement of the field in recent years, more work is
required to establish the breadth of HBO2 utilization in 21st
century medicine. Investigations of fundamental mechanisms
are still needed, and on the clinical front, patient selection
criteria must be clarified to truly make HBO2 a cost-effective
treatment modality.
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